STUDY OF VERY LOW FREQUENCY/EXTREME LOW FREQUENCY (VLF/ELF) WAVE IN A.C ELECTRIC FIELD
STUDY OF VERY LOW FREQUENCY/EXTREME LOW FREQUENCY (VLF/ELF) WAVE IN A.C ELECTRIC FIELD
Main Article Content
Abstract
ELF/VLF stands for Extremely Low Frequency and Very Low Frequency, and refers to the range 300 Hz to 30 kHz. We're talking about radio waves, like the AM/FM signals you get, just at an even lower frequency. Communications with submarines immersed in the conducting sea necessitated the use of VLF waves and later ELF waves, with their comparatively large skin depths in salt water. This need for navigation and communications with submarines and the need for reliable global military communications was the indirect driving force behind most of the developments in VLF and ELF radio wave propagation theory and experiment over the last 50 years.
Article Details
##references## ##ver##
Barr, R., D. Llanwyn Jones, and C. J. Rodger (2000), ELF and VLF radio waves, J. Atmos. Sol. Terr. Phys., 62, 1689–1718.
Davies, K. (1990), Ionospheric Radio, Inst. of Electrical Engineers, London. Getmantsev, C. G., N. A. Zuikov, D. S. Kotik, N. A. Mironenko, V. O. Mityakov, Y. A. Rapoport, V. Y. Sazanov, V. Y. Trakhtengerts, and V. Y. Eidman (1974), Combination frequencies in the interaction between highâ€power shortâ€wave radiation and ionsopheric plasma, J. Exp. Theor. Phys., 20, 101–102.
McNeil, J. D., and V. F. Labson (1991), Geological mapping using VLF radio field, in Electromagnetic Methods in Applied Geophysics, edited by M. Nabighian, chap. 7, pp. 521–640, Soc. of Explor. Geophys., Tulsa, Okla.
Cummer, S. A., U. S. Inan, T. F. Bell, and C. P. Barringtonâ€Leigh (1998), ELF radiation produced by electrical currents in sprites, Geophys. Res. Lett., 25(8), 1281–1284.
Cummer, S. A., and U. S. Inan (1997), Measurement of charge transfer in spriteproducing lightning using ELF radio atmospherics, Geophys. Res. Lett., 24, 1731–1734.
Cummer, S. A., H. U. Frey, S. B. Mende, R.R. Hsu, H.T. Su, A. B. Chen, H. Fukunishi, and Y. Takahashi (2006a), Simultaneous radio and satellite optical measurements of highaltitude sprite current and lightning continuing current, J. Geophys. Res., 111, A10315, doi:10.1029/2006JA011809.
Stanley, M. A. (2000), Sprites and their parent discharges, Ph.D. thesis, N. M. Inst. of Min. and Technol., Socorro.
Farges, T., E. Blanc, A. Le Pichon, T. Neubert, and T. H. Allin (2005), Identification of infrasound produced by sprites during the Sprite2003 campaign, Geophys. Res. Lett., 32, L01813, doi:10.1029/2004GL021212.
Cummer, S. A., and U. S. Inan (1997), Measurement of charge transfer in spriteproducing lightning using ELF radio atmospherics, Geophys. Res. Lett., 24, 1731–1734.
Bell, T. F., S. C. Reising, and U. S. Inan (1998), Intense continuing currents following positive cloudtoground lightning associated with red sprites, Geophys. Res. Lett., 25(8), 1285–1288.
Cummer, S. A., and M. Füllekrug (2001), Unusually intense continuing current in lightning causes delayed mesospheric breakdown, Geophys. Res. Lett., 28, 495–498.
Li, J., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2008), Coordinated analysis of delayed sprites with highspeed images and remote electromagnetic fields, J. Geophys. Res., 113, D20206, doi:10.1029/2008JD010008.
Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong (1999), Criteria for sprites and elves based on Schumann resonance observations, J. Geophys. Res., 104(D14),16,943–16,964.
Ross, M., S. A. Cummer, T. K. Nielsen, and Y. Zhang (2008), Simultaneous remote electric and magnetic field measurements of lightning continuing currents, J. Geophys. Res., 113, D20125, doi:10.1029/2008JD010294.
Bösinger, T., A. Mika, S. L. Shalimov, C. Haldoupis, and T. Neubert (2006), Is there a unique signature in the ULF response to spriteâ€associated lightning flashes?, J. Geophys. Res., 111, A10310, doi:10.1029/2006JA011887.
Greenberg, E., C. Price, Y. Yair, C. Haldoupis, O. Chanrion, and T. Neubert (2009), ELF/VLF signatures of spriteproducing lightning discharges observed during the 2005 EuroSprite campaign, J. Atmos. Sol. Terr. Phys.,71, 1254–1266